12 research outputs found

    Estimation parcimonieuse de biais multitrajets pour les systĂšmes GNSS

    Get PDF
    L’évolution des technologies Ă©lectroniques (miniaturisation, diminution des coĂ»ts) a permis aux GNSS (systĂšmes de navigation par satellites) d’ĂȘtre de plus en plus accessibles et doncutilisĂ©s au quotidien, par exemple par le biais d’un smartphone, ou de rĂ©cepteurs disponibles dans le commerce Ă  des prix raisonnables (rĂ©cepteurs bas-coĂ»ts). Ces rĂ©cepteurs fournissent Ă  l’utilisateur plusieurs informations, comme par exemple sa position et sa vitesse, ainsi que des mesures des temps de propagation entre le rĂ©cepteur et les satellites visibles entre autres. Ces rĂ©cepteurs sont donc devenus trĂšs rĂ©pandus pour les utilisateurs souhaitant Ă©valuer des techniques de positionnement sans dĂ©velopper tout le hardware nĂ©cessaire. Les signaux issus des satellites GNSS sont perturbĂ©s par de nombreuses sources d’erreurs entre le moment oĂč ils sont traitĂ©s par le rĂ©cepteurs pour estimer la mesure correspondante. Il est donc nĂ©cessaire decompenser chacune des ces erreurs afin de fournir Ă  l’utilisateur la meilleure position possible. Une des sources d’erreurs recevant beaucoup d’intĂ©rĂȘt, est le phĂ©nomĂšne de rĂ©flexion des diffĂ©rents signaux sur les Ă©ventuels obstacles de la scĂšne dans laquelle se trouve l’utilisateur, appelĂ© multitrajets. L’objectif de cette thĂšse est de proposer des algorithmes permettant de limiter l’effet des multitrajets sur les mesures GNSS. La premiĂšre idĂ©e dĂ©veloppĂ©e dans cette thĂšse est de supposer que ces signaux multitrajets donnent naissance Ă  des biais additifs parcimonieux. Cette hypothĂšse de parcimonie permet d’estimer ces biais Ă  l’aide de mĂ©thodes efficaces comme le problĂšme LASSO. Plusieurs variantes ont Ă©tĂ© dĂ©veloppĂ©s autour de cette hypothĂšse visant Ă  contraindre le nombre de satellites ne souffrant pas de multitrajet comme non nul. La deuxiĂšme idĂ©e explorĂ©e dans cette thĂšse est une technique d’estimation des erreurs de mesure GNSS Ă  partir d’une solution de rĂ©fĂ©rence, qui suppose que les erreurs dues aux multitrajets peuvent se modĂ©liser Ă  l’aide de mĂ©langes de Gaussiennes ou de modĂšles de Markov cachĂ©s. Deux mĂ©thodes de positionnement adaptĂ©es Ă  ces modĂšles sont Ă©tudiĂ©es pour la navigation GNSS

    Sparse estimation of multipath biases for GNSS

    No full text
    L’évolution des technologies Ă©lectroniques (miniaturisation, diminution des coĂ»ts) a permis aux GNSS (systĂšmes de navigation par satellites) d’ĂȘtre de plus en plus accessibles et doncutilisĂ©s au quotidien, par exemple par le biais d’un smartphone, ou de rĂ©cepteurs disponibles dans le commerce Ă  des prix raisonnables (rĂ©cepteurs bas-coĂ»ts). Ces rĂ©cepteurs fournissent Ă  l’utilisateur plusieurs informations, comme par exemple sa position et sa vitesse, ainsi que des mesures des temps de propagation entre le rĂ©cepteur et les satellites visibles entre autres. Ces rĂ©cepteurs sont donc devenus trĂšs rĂ©pandus pour les utilisateurs souhaitant Ă©valuer des techniques de positionnement sans dĂ©velopper tout le hardware nĂ©cessaire. Les signaux issus des satellites GNSS sont perturbĂ©s par de nombreuses sources d’erreurs entre le moment oĂč ils sont traitĂ©s par le rĂ©cepteurs pour estimer la mesure correspondante. Il est donc nĂ©cessaire decompenser chacune des ces erreurs afin de fournir Ă  l’utilisateur la meilleure position possible. Une des sources d’erreurs recevant beaucoup d’intĂ©rĂȘt, est le phĂ©nomĂšne de rĂ©flexion des diffĂ©rents signaux sur les Ă©ventuels obstacles de la scĂšne dans laquelle se trouve l’utilisateur, appelĂ© multitrajets. L’objectif de cette thĂšse est de proposer des algorithmes permettant de limiter l’effet des multitrajets sur les mesures GNSS. La premiĂšre idĂ©e dĂ©veloppĂ©e dans cette thĂšse est de supposer que ces signaux multitrajets donnent naissance Ă  des biais additifs parcimonieux. Cette hypothĂšse de parcimonie permet d’estimer ces biais Ă  l’aide de mĂ©thodes efficaces comme le problĂšme LASSO. Plusieurs variantes ont Ă©tĂ© dĂ©veloppĂ©s autour de cette hypothĂšse visant Ă  contraindre le nombre de satellites ne souffrant pas de multitrajet comme non nul. La deuxiĂšme idĂ©e explorĂ©e dans cette thĂšse est une technique d’estimation des erreurs de mesure GNSS Ă  partir d’une solution de rĂ©fĂ©rence, qui suppose que les erreurs dues aux multitrajets peuvent se modĂ©liser Ă  l’aide de mĂ©langes de Gaussiennes ou de modĂšles de Markov cachĂ©s. Deux mĂ©thodes de positionnement adaptĂ©es Ă  ces modĂšles sont Ă©tudiĂ©es pour la navigation GNSS.The evolution of electronic technologies (miniaturization, price decreasing) allowed Global Navigation Satellite Systems (GNSS) to be used in our everyday life, through a smartphone for instance, or through receivers available in the market at reasonable prices (low cost receivers). Those receivers provide the user with many information, such as his position or velocity, but also measurements such as propagation delays of the signals emitted by the satellites and processed by the receiver. These receivers are thus widespread for users who want to challenge positioning techniques without developing the whole product. GNSS signals are affected by many error sources between the moment they are emitted and the moment they are processed by the receiver to compute the measurements. It is then necessary to mitigate each of these error sources to provide the user the most accurate solution. One of the most intense research topic in navigation is the phenomenon of reflexions on the eventual obstacles in the scene the receiver is located in, called multipath. The aim of this thesis is to propose algorithms allowing the effects of multipath on GNSS measurements to be reduced. The first idea presented in this thesis is to assume these multipath lead to sparse additive biases. This hypothesis allows us to estimate this biases thanks to efficient methods such as the LASSO problem. The second idea explored in this thesis is an estimation method of GNSS measurement errors corresponding to the proposed navigation algorithm thanks to a reference trajectory, which assumes these errors can be modelled by Gaussian mixtures or Hidden Markov Models. Two filtering methods corresponding to these two models are studied for GNSS navigation

    An EM Algorithm for Mixtures of Hyperspheres

    No full text
    International audienceThis paper studies a new expectation maximization (EM) algorithm to estimate the centers and radii of multiple hyperspheres. The proposed method introduces latent variables indicating to which hypersphere each vector from the dataset belongs to, in addition to random latent vectors having an a priori von Mises-Fisher distribution characterizing the location of each vector on the different hyperspheres. This statistical model allows a complete data likelihood to be derived, whose expected value conditioned on the observed data has a known distribution. This property leads to a simple and efficient EM algorithm whose performance is evaluated for the estimation of hypersphere mixtures yielding promising results

    Generalized isolation forest for anomaly detection

    No full text
    International audienceThis letter introduces a generalization of Isolation Forest (IF) based on the existing Extended IF (EIF). EIF has shown some interest compared to IF being for instance more robust to some artefacts. However, some information can be lost when computing the EIF trees since the sampled threshold might lead to empty branches. This letter introduces a generalized isolation forest algorithm called Generalized IF (GIF) to overcome these issues. GIF is faster than EIF with a similar performance, as shown in several simulation results associated with reference databases used for anomaly detection

    Estimation du centre et du rayon d'une hypersphĂšre Ă  l'aide d'une loi a priori de Von Mises-Fisher et d'un algorithme EM

    No full text
    International audienceThis article introduces an extension of an EM algorithm (Expectation Maximization) published recently by the authors allowing to estimate jointly the center and the radius of an hypersphere as well as the statistical model hyperparameters acounting that the observations are located on a part of the hypersphere. The proposed method relies on the introduction of latent variables having a von Mises Fisher prior. This statistical model allows to express the complete data likelihood, which expectancy conditionned to the observed data has a known distribution resulting in a simple and efficient EM algorithm. The performances of this estimation algorithm are assessed through simulations performed in a bidimensinal case with promising resultsCet article présente une extension d'un algorithme EM (expectation maximization) publié récemment par les auteurs permettant d'estimer conjointement le centre et le rayon d'une hypersphÚre avec les hyperparamÚtres d'un modÚle statistique prenant en compte le fait que les observations sont localisées sur une partie de l'hypersphÚre. La méthode proposée repose sur l'ajout de variables latentes ayant une loi a priori de von Mises-Fisher. Ce modÚle statistique permet d'exprimer la vraisemblance complÚte des données, dont l'espérance conditionnée aux données observées possÚde une distribution connue conduisant à un algorithme EM simple et efficace. Les performances de cet algorithme d'estimation sont évaluées à l'aide de de simulations effectuées dans un cas bi-dimensionnel avec des résultats prometteurs

    Hypersphere fitting from noisy data using an EM algorithm

    Get PDF
    International audienceThis letter studies a new expectation maximization (EM) algorithm to solve the problem of circle, sphere and more generally hypersphere fitting. This algorithm relies on the introduction of random latent vectors having a priori independent von Mises-Fisher distributions defined on the hypersphere. This statistical model leads to a complete data likelihood whose expected value, conditioned on the observed data, has a Von Mises-Fisher distribution. As a result, the inference problem can be solved with a simple EM algorithm. The performance of the resulting hypersphere fitting algorithm is evaluated for circle and sphere fitting

    Multipath Mitigation for GNSS Positioning in an Urban Environment Using Sparse Estimation

    Get PDF
    International audienceMultipath (MP) remains the main source of error when using global navigation satellite systems (GNSS) in a constrained environment, leading to biased measurements and thus to inaccurate estimated positions. This paper formulates the GNSS navigation problem as the resolution of an overdetermined system whose unknowns are the receiver position and speed, clock bias and clock drift, and the potential biases affecting GNSS measurements. We assume that only a part of the satellites are affected by MP, i.e., that the unknown bias vector has several zero components, which allows sparse estimation theory to be exploited. The natural way of enforcing this sparsity is to introduce an l1 regularization associated with the bias vector. This leads to a least absolute shrinkage and selection operator problem that is solved using a reweighted-l1 algorithm. The weighting matrix of this algorithm is designed carefully as functions of the satellite carrier-to-noise density ratio (C/N0) and the satellite elevations. Experimental validation conducted with real GPS data show the effectiveness of the proposed method as long as the sparsity assumption is respected

    Smooth Bias Estimation for Multipath Mitigation Using Sparse Estimation

    Get PDF
    International audienceMultipath remains the main source of error when using lobal navigation satellite systems (GNSS) in constrained environment, leading to biased measurements and thus to inaccurate estimated positions. This paper formulates the GNSS navigation problem as the resolution of an overdetermined system, which depends nonlinearly on the receiver position and linearly on the clock bias and drift, and possible biases affecting GNSS measurements. The extended Kalman filter is used to linearize the navigation problem whereas sparse estimation is considered to estimate multipath biases. We assume that only a part of the satellites are affected by multipath, i.e., that the unknown bias vector is sparse in the sense that several of its components are equal to zero. The natural way of enforcing sparsity is to introduce an l1 regularization associated with the bias vector. This leads to a least absolute shrinkage and selection operator (LASSO) problem that is solved using a reweighted-l1 algorithm. The weighting matrix of this algorithm is designed carefully as functions of the satellite carrier to noise density ratio and the satellite elevations. The smooth variations of multipath biases versus time are enforced using a regularization based on total variation. An experiment conducted on real data allows the performance of the proposed method to be appreciated

    Multipath Mitigation in Global Navigation Satellite Systems Using a Bayesian Hierarchical Model with Bernoulli Laplacian Priors

    Get PDF
    International audienceA new sparse estimation method was recently introduced in a pre-vious work to correct biases due to multipath (MP) in GNSS me-asurements. The proposed strategy was based on the resolution ofa LASSO problem constructed from the navigation equations usingthe reweighted-`1method. This strategy requires to adjust the re-gularization parameters balancing the data fidelity term and the in-volved regularizations. This paper introduces a new Bayesian es-timation method allowing the MP biases and the unknown modelparameters and hyperparameters to be estimated directly from theGNSS measurements. The proposed method is based on Bernoulli-Laplacian priors, promoting sparsity of MP biases

    Robust Covariance Matrix Estimation and Sparse Bias Estimation for Multipath Mitigation

    Get PDF
    Multipath is an important source of error when using global navigation satellite systems (GNSS) in urban environment, leading to biased measurements and thus to false positions. This paper treats the GNSS navigation problem as the resolution of an overdetermined system, which depends on the receiver's position, velocity, clock bias, clock drift, and possible biases affecting GNSS measurements. We investigate a sparse estimation method combined with an extended Kalman filter to solve the navigation problem and estimate the multipath biases. The proposed sparse estimation method assumes that only a part of the satellites are affected by multipath, i.e., that the unknown bias vector is sparse in the sense that several of its components are equal to zero. The natural way of enforcing sparsity is to introduce an ℓ1 regularization ensuring that the bias vector has zero components. This leads to a least absolute shrinkage and selection operator (LASSO) problem, which is solved using a reweighted-ℓ1 algorithm. The weighting matrix of this algorithm is defined as functions of the carrier to noise density ratios and elevations of the different satellites. Moreover, the smooth variations of multipath biases versus time are enforced using a regularization based on total variation. For estimating the noise covariance matrix, we use an iterative reweighted least squares strategy based on the so-called Danish method. The performance of the proposed method is assessed via several simulations conducted on different real datasets
    corecore